Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro.
نویسندگان
چکیده
Carbon nanotubes (CNT) possess excellent mechanical properties to play the role as reinforcement for imparting strength and toughness to brittle hydroxyapatite (HA) bioceramic coating. However, lack of processing technique to uniformly distribute multiwalled CNTs in HA coating and limited studies and sparse knowledge evincing toxicity of CNTs has kept researchers in dispute for long. In the current work, we have addressed these issues by (i) successfully distributing multiwalled CNT reinforcement in HA coating using plasma spraying to improve the fracture toughness (by 56%) and enhance crystallinity (by 27%), and (ii) culturing human osteoblast hFOB 1.19 cells onto CNT reinforced HA coating to elicit its biocompatibility with living cells. Unrestricted growth of human osteoblast hFOB 1.19 cells has been observed near CNT regions claiming assistance by CNT surfaces to promote cell growth and proliferation.
منابع مشابه
Electrophoretic Deposition of Microwave Combustion Synthesized Hydroxyapatite and Its Carbon Nanotube Reinforced Nanocomposite on 316L Stainless Steel
Nanohydroxyapatite-carbon nanotube Nanocomposite (HA-CNT) coatings were deposited via electrophoretic deposition (EPD). Hydroxyapatite was synthesized via microwave combustion method using calcium nitrate and glycing as starting materials. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that pure hydroxyapatite nanoparticles have been synthesized. AISI 316L s...
متن کاملAnalytically Modeling of In Vitro Calcium Dissolution of Plasma- Sprayed Hydroxyapatite Coatings
The in vitro dissolution of plasma-sprayed hydroxyapatite (PHA) coatings with different characteristics, produced by various spraying conditions, in a Tris-buffered solution at pH 7.4 was experimentally studied through the measurement of calcium ions release with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and then modeled. Three coating characteristics, th...
متن کاملQuantification of carbon nanotube induced adhesion of osteoblast on hydroxyapatite using nano-scratch technique.
This paper explores the nano-scratch technique for measuring the adhesion strength of a single osteoblast cell on a hydroxyapatite (HA) surface reinforced with carbon nanotubes (CNTs). This technique efficiently separates out the contribution of the environment (culture medium and substrate) from the measured adhesion force of the cell, which is a major limitation of the existing techniques. Na...
متن کاملIn vitro evaluation of apatite/wollastonite glass–ceramic nano biocoatings on 316 alloys by plasma-sprayed
Among bioactive ceramics, the apatite/wollastonite (A/W) glass ceramic, containing apatite and wollastonite crystals in the glassy matrix, has been largely studied because of good bioactivity and used in some fields of medicine, especially in orthopedics and dentistry. However, medical applications of bioceramic are limited to non-load bearing applications because of their poor mechanical prope...
متن کاملIn vitro growth and differentiation of osteoblast-like human bone marrow cells on glass reinforced hydroxyapatite plasma-sprayed coatings.
Human osteoblastic bone marrow cells were cultured for periods of up to 28 days in control conditions and on the surface of a glass reinforced hydroxyapatite composite (HA/G1) and commercial hydroxyapatite (HA) plasma-sprayed coatings, in the "as-received" condition and after immersion treatment in culture medium for 21 days. Cultures were characterized for total protein content and alkaline ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2007